Akademia Pedagogiki Specjalnej im. Marii Grzegorzewskiej w Warszawie - Centralny System Uwierzytelniania
Strona główna

Development of Science Capital by Students

Informacje ogólne

Kod przedmiotu: 00-0F-DOS
Kod Erasmus / ISCED: (brak danych) / (brak danych)
Nazwa przedmiotu: Development of Science Capital by Students
Jednostka: Instytut Pedagogiki
Grupy: Problemy współczesnej edukacji - konw. w jęz. obcym - II rok, 3 sem PE (II st. st. stac.) - 1 obow.
Społeczne problemy współcz. świata - konw. w jęz. obcym - II rok PC (II st. st. stac.) - 1 obow.
Punkty ECTS i inne: 0 LUB 2.00 (w zależności od programu) Podstawowe informacje o zasadach przyporządkowania punktów ECTS:
  • roczny wymiar godzinowy nakładu pracy studenta konieczny do osiągnięcia zakładanych efektów uczenia się dla danego etapu studiów wynosi 1500-1800 h, co odpowiada 60 ECTS;
  • tygodniowy wymiar godzinowy nakładu pracy studenta wynosi 45 h;
  • 1 punkt ECTS odpowiada 25-30 godzinom pracy studenta potrzebnej do osiągnięcia zakładanych efektów uczenia się;
  • tygodniowy nakład pracy studenta konieczny do osiągnięcia zakładanych efektów uczenia się pozwala uzyskać 1,5 ECTS;
  • nakład pracy potrzebny do zaliczenia przedmiotu, któremu przypisano 3 ECTS, stanowi 10% semestralnego obciążenia studenta.

zobacz reguły punktacji
Język prowadzenia: angielski
Rodzaj przedmiotu:

obowiązkowe

Zajęcia w cyklu "Semestr letni 2019/2020" (zakończony)

Okres: 2020-02-17 - 2020-09-30
Wybrany podział planu:
Przejdź do planu
Typ zajęć:
Konwersatorium, 15 godzin, 12 miejsc więcej informacji
Koordynatorzy: Ewa Dąbrowa
Prowadzący grup: Ewa Dąbrowa
Strona przedmiotu: https://classroom.google.com/c/NzA2OTA3MTQ2MDha
Lista studentów: (nie masz dostępu)
Zaliczenie: Przedmiot - Zaliczenie na ocenę
Konwersatorium - Zaliczenie na ocenę
Skrócony opis:

Assessment:

- Participation in the lectures - one absence allowed

- Activity

- Presentation: Cultural Conflict in the Local Environment and/or in the Global World - Analising and Proposals of Resolving

Pomiar efektów w trakcie pracy zdalnej:

- przygotowanie prezentacji i przedstawienie jej grupie wraz z pytaniami do pracy własnej oraz materiałem dodatkowym - praca on-line w czasie rzeczywistym;

- zadania do prezentacji studentów i treści konwersatorium.

Prace dostępne są na platformie google classroom.

Praca prowadzona jest w w formie

1. synchronicznej - https://teams.microsoft.com/_#/school/conversations/Og%C3%B3lny?threadId=19:403f332ef1a542e98f57e1bbe6d1f389@thread.tacv2&ctx=channel; kod zespołu: 229yu2r

godzina odbywania zajęć: każdy piątek, g. 10:00

2. asynchronicznej: praca na classroomie (informacje podane wyżej)

Zadania są przesyłane do osoby prowadzącej zajęcia:

1. Science capital - why it is so important in the contemporary world? - 7 maja

2. Science capital and cultural capital – theoretical analyses - 15 maja

3. Prezentacje - wg tematów i harmonogramu podanego w classroom.

Pełny opis:

1. Science capital - why it is so important in the contemporary world?

2. Science capital and cultural capital – theoretical analyses.

3. Students' science capital - determinants and differences.

4. Methodological aspects of science capital.STEAM and the development of science capital. ‘New revolution?’

5. STEAM learning at school.

6. Non-formal education and engagement for STEAM – new opportunities.

7. Development of science capital in the school environment – the best practices.

8. Exercises.

Literatura:

1. Archer L., Dawson E., DeWitt J., Seakins A., Wong B. (2014). Aspires. Young people science and career aspirations, age 10-14, London: Department of Education & Professional Studies.

2. Archer L., Dawson E., DeWitt J., Seakins A., Wong B., (2015). Science Capital”: A Conceptual, Methodological, and Empirical Argument for Extending Bourdieusian Notions of Capital Beyond the Arts, Journal of Research in Science Teaching, 52(7), 922-948.

3. Archer L., DeWitt J., Osborne J., Dillon J., Willis B., Wong B., (2012), Science aspirations and family habitus: How families shape children’s engagement and identification with science. American Educational Research Journal, 49(5), 881-908.

4. Aschbacher P., Li E., Roth E. (2010). Is science me? High school students’ identities, participation and aspirations in science, engineering, and medicine. Journal of Research in Science Teaching, 47, 564- 582.

5. Becker, G. S. (1993). Human capital: A theoretical and empirical analysis, with special reference to education. Chicago: University of Chicago Press.

6. Bøe M. V., Henriksen E. K., Lyons T., Schreiner C. (2011), Participation in science and technology: Young people’s achievement-related choices in late modern societies. Studies in Science Education, 47(1), 37–71.

7. Bourdieu P. (1977), Outline of a theory of practice. Cambridge: Cambridge University Press.

8. Bourdieu P. (2004), Science of science and reflexivity. Cambridge: Cambridge University Press.

9. Cerinsek G., Hribar T., Glodez N., Dolinsek S. (2012). Which are my future career priorities and what influenced my choice of studying Science, Technology, Engineering or Mathematics? Some insights on educational choice -Case of Slovenia. International Journal of Science Education, 35(17), 1-27.

10. Chang S-N., Yeung Y-Y., Cheng, M. (2009), Ninth graders’ learning interests, life experiences and attitudes towards science and technology. Journal of Science Education and Technology, 18, 447–457.

11. Christidou V. (2011), Interest, attitudes and images related to science: Combining students’ voices with the voices of school science, teachers, and popular science. International Journal of Environmental & Science Education, 6, 141-159.

12. Claussen S., Osborne J., (2013), Bourdieu’s notion of cultural capital and its implications for the science curriculum. Science Education, 97(1), 58-79.

13. DeWitt J., Osborne J., Archer L., Dillon J., Willis B., Wong B. (2011), Young Children’s aspiration in science: The unequivocal, the uncertain and the unthinkable. International Journal of Science Education, 36(6), 1037-1063.

14. Dika S.L., Singh S. (2002), Applications of social capital in educational literature: A critical synthesis. Review of Educational Research, 72, 31-60.

15. Mamlok-Naaman R., Korpershoek H., Kuyper H., Bosker R., Van Der Werf G. (2011). How can we motivate high school students to study science? Science Education International, 22, 5-17.

16. Masnick A.M., Valenti S.S., Cox B.D., Osman C.J. (2010). A multidimensional scaling analysis of students’ attitudes about science careers. International Journal of Science Education, 32, 653-667

17. Olitsky S., Loman L., Gardner J., Billups M. (2010). Coherence, contradiction, and the development of school science identities. Journal of Research in Science Teaching, 47(10),1209–1228.

18. Taconis R., Kessels U. (2009), How choosing science depends on students’ individual fit to “science culture.” International Journal of Science Education, 31, 1115 –1132.

Uwagi:

Lectures & labs - simulated experiences, video and slide demonstrations, discussions

Lectures & labs - simulated experiences, video and slide demonstrations, discussions, discussion, exercises, presentation

W trakcie pracy zdalnej: praca z tekstem, prezentacja, rozwiązywanie sytuacji problemowej.

Praca odbywa się za pośrednictwem platformy classroom:

https://classroom.google.com/c/NzA2OTA3MTQ2MDha

kod kursu: qudsgzl

Praca w czasie rzeczywistym Teams: https://teams.microsoft.com/_#/school/conversations/Og%C3%B3lny?threadId=19:403f332ef1a542e98f57e1bbe6d1f389@thread.tacv2&ctx=channel; kod zespołu: 229yu2r

godzina odbywania zajęć: każdy piątek, g. 10:00

Zajęcia w cyklu "Semestr zimowy 2020/2021" (zakończony)

Okres: 2020-10-01 - 2021-02-21
Wybrany podział planu:
Przejdź do planu
Typ zajęć:
Konwersatorium, 15 godzin, 13 miejsc więcej informacji
Koordynatorzy: Ewa Dąbrowa
Prowadzący grup: Ewa Dąbrowa
Strona przedmiotu: https://teams.microsoft.com/l/team/19%3ab6a883de1a4f44948c87984febd6a6d1%40thread.tacv2/conversations?groupId=728c5466-c804-4995-8816-08410ba2f22b&tenantId=aee18df6-9fc6-4188-b9f4-b3f12e451c86
Lista studentów: (nie masz dostępu)
Zaliczenie: Zaliczenie na ocenę
Skrócony opis:

Assessment:

- Participation in the lectures - one absence allowed

- Activity

- Presentation - choice one topic

Pomiar efektów w trakcie pracy zdalnej:

- przygotowanie prezentacji i przedstawienie jej grupie wraz z pytaniami do pracy własnej oraz materiałem dodatkowym - praca on-line w czasie rzeczywistym;

- zadania do prezentacji studentów i treści konwersatorium.

Pass the class:

100%-90,1% - 5.0

90%-80,1% - 4.5

80%-70,1% - 4.0

70%-60,1% - 3.5

60%-50,1% - 3.0

50% and less - 2.0

Pełny opis:

1. Introduction.

2. Science capital - why it is so important in the contemporary world?

3. Science capital and cultural capital – theoretical analyses.

4. Students' science capital - determinants and differences.

5. Methodological aspects of science capital.STEAM and the development of science capital. ‘New revolution?’

6. STEAM teaching and learning at school. Teaching science in a Covid-19.

7. Non-formal education and engagement for STEAM – new opportunities.

8. Development of science capital in the school environment – the best practices. Exercises.

Literatura:

1. Archer L., Dawson E., DeWitt J., Seakins A., Wong B. (2014). Aspires. Young people science and career aspirations, age 10-14, London: Department of Education & Professional Studies.

2. Archer L., Dawson E., DeWitt J., Seakins A., Wong B., (2015). Science Capital”: A Conceptual, Methodological, and Empirical Argument for Extending Bourdieusian Notions of Capital Beyond the Arts, Journal of Research in Science Teaching, 52(7), 922-948.

3. Archer L., DeWitt J., Osborne J., Dillon J., Willis B., Wong B., (2012), Science aspirations and family habitus: How families shape children’s engagement and identification with science. American Educational Research Journal, 49(5), 881-908.

4. Aschbacher P., Li E., Roth E. (2010). Is science me? High school students’ identities, participation and aspirations in science, engineering, and medicine. Journal of Research in Science Teaching, 47, 564- 582.

5. Becker, G. S. (1993). Human capital: A theoretical and empirical analysis, with special reference to education. Chicago: University of Chicago Press.

6. Bøe M. V., Henriksen E. K., Lyons T., Schreiner C. (2011), Participation in science and technology: Young people’s achievement-related choices in late modern societies. Studies in Science Education, 47(1), 37–71.

7. Bourdieu P. (1977), Outline of a theory of practice. Cambridge: Cambridge University Press.

8. Bourdieu P. (2004), Science of science and reflexivity. Cambridge: Cambridge University Press.

9. Cerinsek G., Hribar T., Glodez N., Dolinsek S. (2012). Which are my future career priorities and what influenced my choice of studying Science, Technology, Engineering or Mathematics? Some insights on educational choice -Case of Slovenia. International Journal of Science Education, 35(17), 1-27.

10. Chang S-N., Yeung Y-Y., Cheng, M. (2009), Ninth graders’ learning interests, life experiences and attitudes towards science and technology. Journal of Science Education and Technology, 18, 447–457.

11. Christidou V. (2011), Interest, attitudes and images related to science: Combining students’ voices with the voices of school science, teachers, and popular science. International Journal of Environmental & Science Education, 6, 141-159.

12. Claussen S., Osborne J., (2013), Bourdieu’s notion of cultural capital and its implications for the science curriculum. Science Education, 97(1), 58-79.

13. DeWitt J., Osborne J., Archer L., Dillon J., Willis B., Wong B. (2011), Young Children’s aspiration in science: The unequivocal, the uncertain and the unthinkable. International Journal of Science Education, 36(6), 1037-1063.

14. Dika S.L., Singh S. (2002), Applications of social capital in educational literature: A critical synthesis. Review of Educational Research, 72, 31-60.

15. Mamlok-Naaman R., Korpershoek H., Kuyper H., Bosker R., Van Der Werf G. (2011). How can we motivate high school students to study science? Science Education International, 22, 5-17.

16. Masnick A.M., Valenti S.S., Cox B.D., Osman C.J. (2010). A multidimensional scaling analysis of students’ attitudes about science careers. International Journal of Science Education, 32, 653-667.

17. Olitsky S., Loman L., Gardner J., Billups M. (2010). Coherence, contradiction, and the development of school science identities. Journal of Research in Science Teaching, 47(10),1209–1228.

18. Taconis R., Kessels U. (2009), How choosing science depends on students’ individual fit to “science culture.” International Journal of Science Education, 31, 1115 –1132.

In add.:

Reimers F., Schleicher A., Saavedra J., Tuominen S., Supporting the continuation of teaching and learning during the COVID-19 Pandemic (2020), Annotated resources for online learning, OECD 2020, http://www.oecd.org/education/Supporting-the-continuation-of-teaching-and-learning-during-the-COVID-19-pandemic.pdf

Uwagi:

Lectures & labs - simulated experiences, video and slide demonstrations, discussion, exercises, presentation, test

Classes take place in real time using the application Teams:

https://teams.microsoft.com/l/team/19%3ab6a883de1a4f44948c87984febd6a6d1%40thread.tacv2/conversations?groupId=728c5466-c804-4995-8816-08410ba2f22b&tenantId=aee18df6-9fc6-4188-b9f4-b3f12e451c86

Team code: rq4bwlx

Nakład pracy studenta:

- liczba godzin kontaktowych - 15

- liczba godzin potrzebnych do przygotowania się do zajęć - 15

- liczba godzin potrzebnych do przygotowania się do egzaminu/zaliczenia - 20

Sumaryczna liczba punktów ECTS -2.

Zajęcia w cyklu "Semestr letni 2020/2021" (zakończony)

Okres: 2021-02-22 - 2021-09-30
Wybrany podział planu:
Przejdź do planu
Typ zajęć:
Konwersatorium, 15 godzin, 13 miejsc więcej informacji
Koordynatorzy: Ewa Dąbrowa
Prowadzący grup: Ewa Dąbrowa
Strona przedmiotu: https://teams.microsoft.com/l/team/19%3a106e0a8688684011be83fa36500bfd51%40thread.tacv2/conversations?groupId=8d3c0c6e-7f1a-4787-bd7c-47d2207f71c6&tenantId=aee18df6-9fc6-4188-b9f4-b3f12e451c86
Lista studentów: (nie masz dostępu)
Zaliczenie: Zaliczenie na ocenę
Skrócony opis:

Assessment:

- Participation in the lectures - one absence allowed

- Activity

- Presentation - choice one topic

Measurement of effects during on-line work:

- preparing presentations and submitting it to the group;

- tasks after the presentation for the group;

- the level of performance of tasks during classes.

Pass the classes:

100%-90,1% - 5.0

90%-80,1% - 4.5

80%-70,1% - 4.0

70%-60,1% - 3.5

60%-50,1% - 3.0

50% and less - 2.0

Pełny opis:

1. Introduction.

2. Science capital - why it is so important in the contemporary world?

3. Science capital and cultural capital – theoretical analyses.

4. Students' science capital - determinants and differences.

5. Methodological aspects of science capital.STEAM and the development of science capital. ‘New revolution?’

6. STEAM teaching and learning at school. Teaching science in a Covid-19.

7. Non-formal education and engagement for STEAM – new opportunities.

8. Development of science capital in the school environment – the best practices. Exercises.

Literatura:

1. Archer L., Dawson E., DeWitt J., Seakins A., Wong B. (2014). Aspires. Young people science and career aspirations, age 10-14, London: Department of Education & Professional Studies.

2. Archer L., Dawson E., DeWitt J., Seakins A., Wong B., (2015). Science Capital”: A Conceptual, Methodological, and Empirical Argument for Extending Bourdieusian Notions of Capital Beyond the Arts, Journal of Research in Science Teaching, 52(7), 922-948.

3. Archer L., DeWitt J., Osborne J., Dillon J., Willis B., Wong B., (2012), Science aspirations and family habitus: How families shape children’s engagement and identification with science. American Educational Research Journal, 49(5), 881-908.

4. Aschbacher P., Li E., Roth E. (2010). Is science me? High school students’ identities, participation and aspirations in science, engineering, and medicine. Journal of Research in Science Teaching, 47, 564- 582.

5. Becker, G. S. (1993). Human capital: A theoretical and empirical analysis, with special reference to education. Chicago: University of Chicago Press.

6. Bøe M. V., Henriksen E. K., Lyons T., Schreiner C. (2011), Participation in science and technology: Young people’s achievement-related choices in late modern societies. Studies in Science Education, 47(1), 37–71.

7. Bourdieu P. (1977), Outline of a theory of practice. Cambridge: Cambridge University Press.

8. Bourdieu P. (2004), Science of science and reflexivity. Cambridge: Cambridge University Press.

9. Cerinsek G., Hribar T., Glodez N., Dolinsek S. (2012). Which are my future career priorities and what influenced my choice of studying Science, Technology, Engineering or Mathematics? Some insights on educational choice -Case of Slovenia. International Journal of Science Education, 35(17), 1-27.

10. Chang S-N., Yeung Y-Y., Cheng, M. (2009), Ninth graders’ learning interests, life experiences and attitudes towards science and technology. Journal of Science Education and Technology, 18, 447–457.

11. Christidou V. (2011), Interest, attitudes and images related to science: Combining students’ voices with the voices of school science, teachers, and popular science. International Journal of Environmental & Science Education, 6, 141-159.

12. Claussen S., Osborne J., (2013), Bourdieu’s notion of cultural capital and its implications for the science curriculum. Science Education, 97(1), 58-79.

13. DeWitt J., Osborne J., Archer L., Dillon J., Willis B., Wong B. (2011), Young Children’s aspiration in science: The unequivocal, the uncertain and the unthinkable. International Journal of Science Education, 36(6), 1037-1063.

14. Dika S.L., Singh S. (2002), Applications of social capital in educational literature: A critical synthesis. Review of Educational Research, 72, 31-60.

15. Mamlok-Naaman R., Korpershoek H., Kuyper H., Bosker R., Van Der Werf G. (2011). How can we motivate high school students to study science? Science Education International, 22, 5-17.

16. Masnick A.M., Valenti S.S., Cox B.D., Osman C.J. (2010). A multidimensional scaling analysis of students’ attitudes about science careers. International Journal of Science Education, 32, 653-667.

17. Olitsky S., Loman L., Gardner J., Billups M. (2010). Coherence, contradiction, and the development of school science identities. Journal of Research in Science Teaching, 47(10),1209–1228.

18. Taconis R., Kessels U. (2009), How choosing science depends on students’ individual fit to “science culture.” International Journal of Science Education, 31, 1115 –1132.

In add.:

Reimers F., Schleicher A., Saavedra J., Tuominen S., Supporting the continuation of teaching and learning during the COVID-19 Pandemic (2020), Annotated resources for online learning, OECD 2020, http://www.oecd.org/education/Supporting-the-continuation-of-teaching-and-learning-during-the-COVID-19-pandemic.pdf

Uwagi:

Lectures & labs - simulated experiences, video and slide demonstrations, discussion, exercises, presentation, test

Classes take place in real time using the application Teams: https://teams.microsoft.com/l/team/19%3a106e0a8688684011be83fa36500bfd51%40thread.tacv2/conversations?groupId=8d3c0c6e-7f1a-4787-bd7c-47d2207f71c6&tenantId=aee18df6-9fc6-4188-b9f4-b3f12e451c86

Team code: su50e2k

Nakład pracy studenta:

- liczba godzin kontaktowych - 15

- liczba godzin potrzebnych do przygotowania się do zajęć - 15

- liczba godzin potrzebnych do przygotowania się do egzaminu/zaliczenia - 20

Sumaryczna liczba punktów ECTS -2.

Opisy przedmiotów w USOS i USOSweb są chronione prawem autorskim.
Właścicielem praw autorskich jest Akademia Pedagogiki Specjalnej im. Marii Grzegorzewskiej w Warszawie.
kontakt deklaracja dostępności USOSweb 7.0.0.0-7 (2024-02-19)